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SUMMARY 

T h i s  is  t h e  f i r s t  annual. report  of t h e  f i r s t  phase of a 3-year 

program. The ob jec t ives  are t o  determine t h e  predominant modes of degradation 

of a plasma sprayed thermal b a r r i e r  coating system, and then t o  deve1.0~ and 

v e r i f y  l i f e  p red ic t ion  models accounting f o r  t hese  degradation modes. The 

f i r s t  t a s k  (Task I) i s  t o  determine t h e  major f a i l u r e  mechanisms. P r e s e n t l . ~ ,  

bond coa t  ox ida t ion  and bond coa t  creep are being evaluated as poten t ia l .  TBC 

f a i l u r e  mechanisms. 

Zr02-Y203 t op  coa t ,  a ].ow pressure plasma sprayed NiCrA1.Y bond c o a t ,  and 

a Rene' 80 subs t r a t e .  

The base l ine  TBC system c o n s i s t s  of an a i r  plasma sprayed 

Pre-exposures i n  a i r  and argon combined wi th  thermal. 

cyc le  tes ts  i n  a i r  and argon are being u t i l . i zed  t o  eva lua te  bond c o a t  

ox ida t ion  as a f a i l u r e  mechanism. The f i r s t  experiment has been compl.eted. 

Unexpectedl.~, t h e  specimeps pre-exposed . i n  'argon f a i l e d  before t h e  specimens 

pre-exposed i n  a i r  i n  subsequent thermal. cyc le  t e s t i n g  i n  a i r .  

are underway t o  t r y  t o  understand t h i s  resu1.t. 

Inves t iga t ions  

Four bond c o a t s  wi th  d i f f e r e n t  c reep  s t r e n g t h s  are being u t i l . i zed  t o  

eva lua te  t h e  e f f e c t  of bond coa t  creep on TBC degradation. These bond c o a t s  

received an al.uminide overcoat p r i o r  t o  appl. ication of t he  top coa t  t o  reduce 

t h e  d i f f e rences  i n  bond coa t  oxidation behavior. 

t hese  specimens has been i n i t i a t e d .  

Thermal. cyc le  t e s t i n g  of 

Prel.iminary experiments indicated t h a t  a Pt/Re l a y e r  a t  t h e  bond 

coa t / t op  coa t  i n t e r f a c e  was ine f fec t ive  i n  r e t a rd ing  oxide s c a l e  growth, t hus  

t h i s  proposed experiment covering t h i s  concept wi1.1. be replaced by an 

experiment i n  which specimens a r e  thermal cyc le  t e s t e d  i n  argon. 

Key property determination methods have been se l ec t ed ,  and tensi1.e 

Strength,  Poisson's r a t i o ,  dynamic modul.us, and c o e f f i c i e n t  of thermal 

expansion will. be determined. 
1 
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INTRODUCTION 

The objec t ives  of t h i s  program are t o  determine t h e  predominant modes of 

degrada t ion  of a plasma sprayed thermal b a r r i e r  coa t ing  system, and then t o  

develop and ve r i fy  l i f e  p red ic t ion  models accounting f o r  t hese  degradation 

modes. The program is divided ‘ in to  two phases, each cons i s t ing  of s e v e r a l  

t a sks .  The Government w i l l  have t h e  opt ion  t o  exercise Phase I1 a f t e r  t he  

f i r s t  phase has been success fu l ly  completed. 

The work i n  Phase I is aimed a t  i d e n t i f y i n g  t h e  r e l a t i v e  importance of t h e  

various f a i l u r e  modes, and developing and ve r i fy ing  a l i f e  p r e d i c t i o n  model(s) 

f o r  t he  predominant mode f o r  a thermal b a r r i e r  coa t ing  system. These 

ob jec t ives  w i l l  be  accomplished i n  a 36month e f f o r t  cons i s t ing  of t h r e e  

t echn ica l  t a sks  plus a repor t ing  task .  Task I w i l l  i d e n t i f y ,  through t h e  

des ign  and performance of a series of experiments, t h e  relative importance of 

t h e  various f a i l u r e  modes f o r  a base thermal b a r r i e r  coa t ing  system. This TBC 

system c o n s i s t s  of a low pressure  plasma sprayed (LPPS) bond coa t  (0.13 + 
0.025 mm th i ck )  and a plasma sprayed Zr02-8% Y203 top  coa t  (0.25 - + 
0.050 mm) on conventionally-cast Rene’ 80 a l l o y  s u b s t r a t e .  Preliminary models 

- 

w i l l  then be formulated based on a n a l y s i s  of t h e  experimental da ta .  These 

models w i l l  be tes ted  and modified based on confirmation tests. Task I a l s o  

inc ludes  determination of key p rope r t i e s  of t h e  coa t ing  materials such as 

t e n s i l e  s t r eng th ,  Poisson’s r a t i o ,  dynamic modulus, and c o e f f i c i e n t  of thermal 

expans ion. 

I n  Task 11, l i f e  p red ic t ion  models f o r  t h e  predominant f a i l u r e  modes w i l l  

be developed. 

experiments and concomitant analyses,  thus c r e a t i n g  a l i f e  p r e d i c t i o n  model by 

means of a combined a n a l y t i c a l ,  experimental program. 

T h i s  w i l l  be accomplished by designing a s u i t a b l e  set of 

2 



These models w i l l  be v e r i f i e d  i n  Task I11 through a series of s e l ec t ed  

tests and ana lys i s .  The r e s u l t s  obtained from t h i s  t a s k  should provide a 

b e t t e r  understanding of t he  l i f e  behavior of TBC systems and the  s u i t a b i l i t y  

of t h e  developed models. This understanding w i l l  be  used t o  formulate  

recommendations f o r  f u r t h e r  research  required t o  a r r i v e  at a f u l l y  

s a t i s f a c t o r y  engine l i f e  p red ic t ion  methodology. 

The work i n  Phase I1 w i l l  develop design-capable, causa l ,  l i f e  p red ic t ion  

models f o r  thermomechanical and thermochemical f a i l u r e  modes, and f o r  t h e  

except ional  condi t ions  of fo re ign  object  'damage and erosion.  This w i l l  be 

accomplished i n  a 241nonth e f f o r t  cons is t ing  of f i v e  t echn ica l  tasks p lus  a 

r epor t ing  task.  I n  Task V, thermomechanical l i f e  models w i l l  be developed. 

This involves  t h e  development of models based on f r a c t u r e  and continuum 

mechanics, and poss ib ly  o the r  l i f e  predic t ion  models. In Task VI, 

thermochemical f a i l u r e  models w i l l  be developed, including oxida t ion  and hot 

cor ros ion  f a i l u r e  models. In Task VII, models f o r  e ros ion  and fo re ign  ob jec t  

damage w i l l  be developed. 

models i n t o  a comprehensive l i f e  pred ic t ion  model w i l l  be accomplished i n  Task 

VIII. I n  t h e  f i n a l  t echn ica l  task ,  Task I X ,  t h e  in t eg ra t ed  model developed i n  

Task VI11 w i l l  be exercised through a combination of cr i t ical  tests and 

analyses  t o  determine its a p p l i c a b i l i t y  and accuracy. 

The in t eg ra t ion  of appropr ia te  combinations of 

3 



TASK I - FAILURE MECHANISM DETERMINATION 

The objective of this task is to experimentally and analytically identify 

the relative importance of the various degradation and failure modes of the 

selected TBC system. Initially, a literature search was performed to assess 

current knowledge on potential failure mechanisms and how bond coat and top 

coat modifications affect these failure mechanisms. Spalling is currently 

considered the primary problem to be addressed for TBCs.  As such, initial 

Task I efforts are directed at evaluating failure mechanisms associated with 

spallation. 

Literature Search 

Generally, state of the art thepal barrier coatings utilize two-layer 

coating systems. 

Zr, or Y) bond coats and ZrO -Y 0 top coats. Three-layer systems have 

been investigated, (1,2) where an extra layer of "graded" bond coat and top 

coat material is incorporated between the bond coat and the top coat (to 

reduce the effect of thermal expansion mismatch). However, these three-layer 

systems have resulted in shorter thermal cycle life than two-layer systems 

The systems consist of MCrAlX (M = Ni or Co or both; X=Hf, 

2 2 3  

(2 ) .  

coat material in the graded layer resulting from larger bond coat material 

surface area. Numerous studies have also shown that the conposition and 

physical characteristics of both the bond coat and top coat are extremely 

important in determining thermal cycle life. 

The shorter life is associated with significant oxidation of the bond 

4 



Bond Coating: 

The primary role of the bond coat in a TBC system is to provide good 

adhesion between the metal substrate and the ceramic top coat, while providing 

good oxidation protection to the underlying substrate alloy. Numerous studies 

have demonstrated that oxidation of the bond coat can significantly affect 

spalling ( 3 - 6 ) .  For this reason, bond coat compositions have evolved from 

early Ni-Cr and Ni-A1 compositions to the currently used MCrAlY compositions. 

Similarly, dense and more oxidation-resistant (lower levels of internal 

oxidation) bond coat layers produced by the low pressure plasma spray (LPPS) 

process have been shown to be better (longer thermal cycle life) than porous 

air plasma sprayed bond coat layers of the same chemical composition (1, 7). 

Both the chemical and processing changes have resulted in TBCs with longer 

thermal cycle lives. 

Small changes in bond coat composition can also strongly affect thermal 

cycle life. 

quantities of yttrium (0.1-1.0 wt.%) in the bond coat are critical ( 3 ) .  His 

studies indicate that TBC systems that utilize bond coats without yttrium fail 

very rapidly. 

A1 are necessary to produce TBCs with long lives ( 3 ,  8 ) .  The same holds true 

for bond coat thickness, where a certain minimum thickness is required ( 3 ,  

8 ) .  

improving the oxidation resistance of that layer. 

Studies by Stecura have shown that the presence of small 

Investigations have also shown that critical levels of Cr and 

In all cases, changes to the bond coat have been linked primarily to 

Recent studies have been aimed at evaluating the effects of bond coat 

oxidation and developing models based on oxidation as a primary TBC failure 

5 



mechanism (9-11). 

a t  f a i l u r e  of specimens with a CaSi04/MCrA1Y TBC r ega rd le s s  of test 

temperature ( 9 ) .  

oxidat ion d a t a  (9,  11). 

In  one study, Miller noted s imilar  weight ga ins  (oxida t ion)  

Miller has a l s o  developed models based on thermal cyc le  and 

His work has  been pr imar i ly  based on a i r  plasma spray 

bond coa t s ,  but more recent  work has shown t h a t  t hese  models are app l i cab le  t o  

LPPS bond c o a t s  (10) .  One model held on how oxida t ion  a f f e c t s  f a i l u r e  is t h a t  

oxidat ion s t ra ins  are s imi l a r  t o  thermal expansion mismatch s t r a i n  (10) .  

Thus, t h e  s t r a i n s  of oxidat ion and the  s t r a i n s  developed by thermal expansion 

mismatch are addi t ive ,  and f a i l u r e  occurs once a c e r t a i n  l e v e l  is reached. 

There is recent  General Electric evidence t h a t  by using s t ronger  bond coa t  

TBCs with a l l o y s ,  t h e  thermal cyc le  l i f e  of TBC systems can be extended (12) .  

bond coa t  compositions of N i C r A l Y Z r B  and N i C r A l Y T a C  (compositions based on 

N i C r A l Y  with add i t iona l  g r a i n  boundary and so l id-so lu t ion  s t r eng then ing '  

elements) had longer l i v e s  i n  thermal cyc le  t e s t i n g  than t h e  convent ional  

N i C r A l Y  bond coat.  I n  another case, two bond coa t s  with d i f f e r e n t  creep 

s t r e n g t h  were tes ted ,  and again,  higher  thermal cyc le  l i f e  was observed f o r  

t h e  TBC system with t h e  higher  bond coa t  creep s t rength .  

Bonding between t h e  bond coa t  and ceramic l aye r  of plasma-sprayed T B C s  i s  

l a r g e l y  mechanical, and t h e  roughness of t h e  bond coa t  is c r i t i c a l  t o  keeping 

t h e  ceramic layer  a t tached (7 ) .  Therefore,  t h e  bond coa t  powder s i z e  and 

spray parameters must be adjusted t o  produce bond coat  su r f aces  t h a t  have 

s i g n i f i c a n t  l eve l s  of sur face  roughness. 

higher  l e v e l s  of poros i ty  do not  develop i n  the  bond coa t  which would reduce 

oxidat ion r e s i s t ance  . 

However, care must be taken so t h a t  

6 



Top Coatings : 

S t a t e  of t h e  a r t  TBCs genera l ly  u t t l i z e  Z r 0 2  top coa t ings  t h a t  have been 

p a r t i a l l y  s t a b i l i z e d  wi th  Y203 (13, 14) .  

t h a t  t h e  optimum content  is  6-8 w/o Y203 (15). 

have been obtained wheq these  y t t r i a - p a r t i a l l y  s t a b i l i z e d  z i r con ia  TBCs 

conta in  a l a r g e  amount of t h e  te t ragonal  phase, small  but not  zero 

Recent i nves t iga t ions  have shown 

Long thermal cyc le  l i v e s  

(approximately 5%) monoclinic phase, and l i t t l e  o r  none of t h e  cubic  phase 

(16, 17).  Stecura a l s o  noted t h a t  when no monoclinic z i r con ia  phase w a s  

p resent  and/or f r e e  y t t r ium was present i n  y t t r i a  s t a b i l i z e d  z i r con ia  

containing 12% Y203 o r  more, t h e  TBC f a i l s  r ap id ly  (15). 

l i t t l e  is  known on how top coa t  phase changes a c t u a l l y  a f f e c t  thermal cyc le  

l i f e .  Although, z i r con ia  can be toughened by phase t ransformations (18, 19 ) ,  

it i s  doubtful  plasma sprayed z i rconia  i s  toughened s i n c e  a s tudy  i n  t h e .  

Unfortunately,  

g r inding  of t h e  y t t r i a - p a r t i a l l y  s t a b i l i z e d  z i r con ia  i n t o  a powder d id  not  

cause a s i g n i f i c a n t  amount of metastable t e t r agona l  t o  transform t o  monoclinic 

(20). 

t reatments  (20). 

Also, f r a c t u r e  toughness w a s  found t o  be r a t h e r  i n s e n s i t i v e  t o  aging 

The c h a r a c t e r i s t i c s  of t he  top coat powder can s i g n i f i c a n t l y  a f f e c t  

.. thermal cyc le  l i f e .  In one study (2 l ) ,  n ine  d i f f e r e n t  Zr02-8%Y203 top  

coa t  powders produced by var ious processes (spray-dried,  s i n t e r e d ,  etc.) were 

appl ied t o  TBC specimens and t e s t e d  in  a thermal cyc le  tes t  under i d e n t i c a l  

condi t ions .  The thermal cyc le  l i f e  fo r  t h e s e  specimens ranged from 40-1000 

cycles .  

t o  changes i n  top coa t  powder processing. 

These r e s u l t s  demons.trate the importance of va r i a t ions  developed due 

7 



The l e v e l s  of poros i ty  and microcracks i n  t h e  top  coa t  can s t rong ly  a f f e c t  

thermal cyc le  l i f e  ( 2 2 - 2 4 ) .  Studies  u t i l i z i n g  a c o u s t i c  emission techniques 

have ind ica ted  tha t  s i g n i f i c a n t  levels of microcracking, r e s u l t i n g  from 

d i f f e rences  i n  thermal expansion mismatch, occur during t h e  f i r s t  few thermal 

cyc les  of t e s t i n g  of z i r con ia  TBCs ( 2 5 ) .  

coat ing t h a t  exh ib i t s  a high dens i ty  of microcracking can b e t t e r  accommodate 

t h e  d i f f e rences  i n  thermal expansion. Thus, t h e  d i f f e rences  i n  thermal 

expansion are re l ieved  by e i t h e r  t h e  degree of p l a s t i c  deformation o r  

microcracking ( 2 6 ) .  

t he  t h e r u a l  shock r e s i s t a n c e  is  enhanced with a concurrent i nc rease  i n  

c r i t i ca l  quench temperature * ( 2 3 ) .  

microcrack l eve l s  ( 2 4 )  increase  t h e  toughness of t h e  ceramic. 

It i s  be l ieved  t h a t  a ceramic 

Also,  by decreasing top coa t  dens i ty ,  and thus  hardness ,  

I n  t h e s e  cases, con t ro l l ed  po ros i ty  and 

Bond Coat/Top Coat I n t e r f a c e  

General ly ,  most au thors  have a s soc ia t ed  TBC f a i l u r e  wi th  t h e  development 

of compressive stresses t h a t  occur i n  t h e  ceramic l aye r  during cool ing (5, 

27) .  

between the  ceramic top coa t  and metal bond coa t  ( 2 3 ,  26, 28, 2 9 ) .  

t hese  stresses may a l s o  be developed by p l a s t i c  an i s t ropy  and thermal 

g rad ien t s  introduced i n t o  the  ceramic during plasma spraying ( 2 1 ) .  

importance of the stress has  been shown by c o r r e l a t i n g  TBC behavior t o  t h e  

s u b s t r a t e  temperature during app l i ca t ion  of t h e  top  coat.  

s u b s t r a t e  temperatures,  longer thermal cyc le  l i v e s  have been achieved ( 3 0 ,  31). 

These s t r e s s e s  can be a t t r i b u t e d  t o  t h e  thermal expansion mismatch 

However, 

The 

By u t i l i z i n g  lower 

*In t h i s  s tudy ( 2 3 > ,  t he  e f f e c t  of z i r c m i a  m a t i n g  dens i ty  on thermal shock 
r e s i s t a n c e  w a s  evaluated by r ap id ly  quenching t h e  coa t ing  i n t o  a water bath. 
The c r i t i ca l  quench temperature w a s  def ined as t h e  temperature requi red  t o  
cause coa t ing  f a i l u r e  or  a l a r g e  drop i n  coa t ing  hardness  when quenched i n t o  
the  water bath. 
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m L-3st TBC system a--Jres appear to originate with the formation oA a crack 

or cracks within the ceramic with failures occurring in the ceramic near the 

bond coatltop coat interface (17, 27). Analysis has indicated that, due to 

the development of temperature gradients in the ceramic, a state of biaxial 

compression and radial tension develops in the ceramic ( 5 ) .  This analysis 

also indicates that cooling stresses are more compressive at the bond coatltop 

coat interface and diminish toward the surface. Thus, failure can be 

attributed to the high stress state at this interface. As indicated, this 

higher stress state at this interface is primarily due to the thermal 

expansion mismatch which is probably effected by bond coat oxidation of' the 

roughened bond coat surface. 

Temperature and Thermal Cycle Duration 

Higher temperatures and more rapid thermal cycling result in shorter TBC 

lives ( 5 ,  27). Stress calculations and experiments have indicated that 

repeatedly subjecting ceramic coatings to higher rates of initial heating and 

cooling has a more destructive influence on coating life than isothermal 

exposure at temperature (27). Higher substrate temperatures dramatically 

decrease thermal cycle life. 

rates, larger ATs* (which create larger stresses due to thermal expansion 

mismatch), and increased rates of other thermomechanical and thermochemical 

processes (such as interdiffusion, sintering, and corrosion). 

This can be attributed to higher oxidation 

* 
thermal cycle. 

AT= maximum substrate temperature - minimum substrate temperature during a 
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Other P o t e n t i a l  Thermochemical Processes  

Other po ten t i a l  thermochemical f a c t o r s  which can a f f e c t  TBC l i f e  inc lude  

s i n t e r i n g  of the ceramic layer and i n t e r d i f f u s i o n  between t h e  bond coa t  and 

subs t r a t e .  

p a r t i c l e s  ( s p l a t s )  and r e l a t i v e l y  l a r g e  pores ,  shr inkage f o r c e s  due t o  

s i n t e r i n g  are probably small. 

behavior is  t h a t  which r e s u l t s  from increased  i n t e r p a r t i c l e  cohesion which, 

while increasing the  s t r eng th  of t h e  ceramic l a y e r  ( p o s i t i v e  f a c t o r ) ,  may a l s o  

reduce i t s  s t r a i n  to l e rance  (nega t ive  f a c t o r ) .  

Because t h e  plasma-sprayed z i r con ia  l a y e r  c o n s i s t s  of l a r g e  

The more l i k e l y  e f f e c t  of s i n t e r i n g  on TBC 

In t e rd i f fus ion  of bond coa t  and s u b s t r a t e  elements a t  e l eva ted  temperature 

does occur and has been documented (32) but  t h e  e f f e c t  of such i n t e r d i f f u s i o n  

on TBC f a i l u r e  is not  w e l l  defined, Clear ly ,  t h e  l o s s  of aluminum from t h e  

bond coa t  by d i f fus ion  i n t o - t h e  s u b s t r a t e  can a l t e r  t h e  oxida t ion  behavior of 

t h e  bond coa t  and i n  the  extreme may l e a d  t o  t h e  formation of less adherent  

oxide species. 

su r face  of t h e  subs t r a t e  through i n t e r d i f f u s i o n  may a l s o  a l ter  t h e i r  phys ica l  

and mechanical p rope r t i e s ,  and thus  inf luence  TBC behavior. 

Changing t h e  composition of t h e  bond coa t  l aye r  and outer  

Corrosion of the  bond coa t ,  another thermochemical e f f e c t ,  can a l s o  l e a d  

t o  TBC f a i l u r e .  

a i r c r a f t  engines,  but can be a s i g n i f i c a n t  problem i n  marine and i n d u s t r i a l  

appl ica t ions .  

condensation of corrodant  species i n  the  pores of t h e  ceramic l a y e r ,  where i t  

can do mechanical damage r e s u l t i n g  from thermal expansion mismatch and/or 

volume changes assoc ia ted  with phase changes i n  t h e  condensate. 

Corrosive a t t a c k  of TECs has  not  genera l ly  been a problem i n  

An a d d i t i o n a l  mode of f a i l u r e  i n  cor ros ive  environments is  

Corrosive 
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environments containing N a  and V have a l s o  been observed t o  leach Y from 

y t t r i a - s t a b i l i z e d  z i r con ia  leading t o  f a i l u r e  r e s u l t i n g  from d e s t a b i l i z a t i o n  

of t h e  z i r con ia  (33, 3 4 ) .  Reducing access of corrodants  by p a r t i a l l y  s e a l i n g  

t h e  su r face  of t he  z i r con ia  coat ing by laser g laz ing  has  been shown t o  extend 

the l i f e  of T B C s  i n  cor ros ive  test environments (311, and t h e  use  of C e O  

s t a b i l i z e d  Z r O  

2 

has  minimized d e s t a b i l i z a t i o n s  i n  V containing environments 2 

(32) 

Other F a i l u r e  Modes 

Although s p a l l a t i o n  of t h e  ceramic l a y e r  is  t h e  primary mode of TBC 

f a i l u r e  i n  cu r ren t  app l i ca t ions ,  erosion and impact damage are also important,  

p o t e n t i a l l y  l i f e - l i m i t i n g  causes  f o r  TBC degradat ion i n  engine environments. 

Loss of some of t he  ceramic layer  by e ros ion  has  been observed i n  s e v e r a l  

engine tes t  of T B C s ,  p a r t i c u l a r l y  on the  outer  bands of HPT nozzles.  

Plasma-sprayed ceramic l a y e r s  of Zr02-Y203 have r e l a t i v e l y  low e ros ion  

r e s i s t a n c e  due t o  t h e i r  unique s t ruc tu re  and l a r g e  amount (10% t o  15%) of 

poros i ty ,  t h e  same f e a t u r e s  t h a t  cont r ibu te  t o  i t s  a b i l i t y  t o  withstand 

thermal s t r a i n .  

su r f ace  of t h e  z i r con ia  l aye r  by a l a se r  g l a s ing  process  can inc rease  t h e  

e ros ion  r e s i s t a n c e  by a f a c t o r  of 8 or more (31). 

m i l s  of coat ing are fused,  t h e  bulk of t h e  z i r con ia  layer  r e t a i n s  t h e  o r i g i n a l  

s t r a i n  tolerance.  

It has been demonstrated t h a t  fu s ing  t h e  top  few m i l s  of t h e  

Since only t h e  ou te r  few 
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One of the potential failure mechanisms being investigated in Task I is 

bond coat oxidation. As discussed above, many studies indicate that bond coat 

oxidation may be a major failure mechanism. 

were utilized to try to isolate the effect of bond coat oxidation on spalling. 

Pre-exposures in air and argon 

Another failure mechanism being investigated is bond coat creep. As 

kndicated, GE evidence has indicated that by using strong bond coat alloys, 

the thermal cycle life of TBC systems can be extended. In this part of the 

study, aluminide overcoats were applied to reduce the differences in bond coat 

oxidation between the various bond coats examined. It is believed that creep 

of the bond coat at elevated temperatures leads to a shift in the stress free 

temperatures and larger compressive stresses develop in the zirconia layer on 

return to room temperature, thus greater propensity for spalling. 

~~ ~~ 

Task I Efforts 
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Experimental Procedures 

Specimen P repa ra t ion  

The base l ine  system u t i l i z e d  c o n s i s t s  of a low pressure  plasma (LPPS) 

Ni-22Cr-lOA1-0.3Y ( w t .  %I bond coa t  and an a i r  plasma sprayed ( U S )  y t t r i a -  

p a r t i a l l y  s t a b i l i z e d  z i r con ia  (Zr02-8%Y 0 ) t o p  c o a t  on conventionally 2 3  

cast Rene' 80 a l l o y  s u b s t r a t e  (Table 1). Bond coa t  th ickness  was 0.13 + 0.025 

mm (0.005 + 0.001 inch ) ,  and z i r con ia  th ickness  w a s  0.25 + 0.05 mm (0.010 + 
0.002 inch.) 

- 
- - - 

The bond coa t  and top  coa t  were applied t o  t h e  tube specimen shown i n  

Figure 1. The tube  specimen w a s  given t h e  Rene' 80 s o l u t i o n  h e a t  treatment 

(1093°C (2000°F) f o r  2 hours,  followed by 1093°C (2000°F) f o r  4 hours i n  

vacuum) p r i o r  t o  a p p l i c a t i o n  of the bond coat. 

g r i t  b l a s t e d  and vapor honed. 

a t i m e  us ing  a p lane tary  holder  i n  an automated LPPS system. 

powder s i z e  of -230+400 mesh w a s  used t o  produce su r face  roughnesses g r e a t e r  

The s u b s t r a t e  su r face  was then 

The bond coa t  was app l i ed  on fou r  specimens a t  

A bond coa t  

than 400 pin i n  Ra*. (necessary t o  produce good bond coa t / top  coa t  bonding). 

Next, the bond coated specimens were cleaned i n  acetone and shadow masked. 

Shadow masking produced a tapered edge (Figure 2) on t h e  z i r con ia  coa t ing  

l a y e r  t o  he lp  reduce premature coating s p a l l a t i o n  during thermal cyc le  

t e s t i n g .  

P50 robo t  and a Metco Computerized Plasma Process Cont ro l le r  Spray System. 

The robot  c o n t r o l s  the plasma to rch  manipulations, while t h e  Metco system 

con t ro l l ed  the spray parameters. 

coa t  and t o p  coa t  are l i s t e d  i n  Table 11. 

as-sprayed TBC system is shown i n  F i g u r e  3.  

The top  coa t  w a s  appl ied  t o  each specimen ind iv idua l ly  using a GE 

The spray parameters used f o r  both t h e  bond 

The micros t ruc ture  f o r  t h i s  

*Ra is  the average peak and v a l l e y  height of t h e  surface.  
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TABLE 1. BASELINE THEREIAL BARRIER COATING SYSTEM (WEIGHT PERCENT) 

Bond Coating : Ni-22Cr-1.OAIU.-O.3Y (Low Pressure Plasma Spray) 

Top Coating : Zr02 - 8Y203 (Air Plasma Spray) 
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Round Specimen to Better 
1.3 _cm Simulate Curvature of 

- 1  Engine Components 1 

ZrO2-8%Y203 Layer (0.25 mm) 
Ends .Free of Zirconia to 
Eliminate End Effect 
Complications 

4 -  
6.5 cm 

c 
1.3 cm Dia x 9.1 cm Ren6 80 
Tube Fully Coated with LPPS 
NiCrAlY- Bond Coat (0.13 mm 

1.3 cm 

t 
a) Test specimen configuration 

b) As-sprayed specimen 

Figure 1 Thermal barrier coating test specimen 
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Coa t Over 

'Top Coat Edge 

Figure 2 Tapered top coa t  edge developed by shadow masking 
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TABLE I1 

PLASMA SPRAY PARAMETERS - 

- -  

Plasma Gun 

APS - 

Metco 7MB 

PrimaryISecondary Gas N2/H2 

Gun Power 36KW 

Poxder Feed Rate 6 Lbs./Hr. 

Preheat 

Spray Distance 

Other 

5 In. 

Metco 7MB 

Ar/H2 

50 KW 

1.800°F 

1.2 In. 

90' a i r  impingement, 

and center of tube cool ing.  

A1203 g r i t  b last  

and vaperhone 

cleaning. 
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a) As-sprayed microstructure 
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b)  Bond coat/top coat interface 

Figure 3 Baseline TBC as-sprayed microstructure (Rene '80, NiCrAlY, 
Zr02-Y 2O 3) 
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Bond Coat Oxidation Effec t  Experiments 

Two experiments are being u t i l i z e d  t o  t r y  t o  i s o l a t e  t he  e f f e c t s  of bond 

coa t  ox ida t ion  on coat ing f a i l u r e .  

I n  t h e  f i r s t  experiment thermal cycle tes ts  are being performed i n  - a i r  on 

specimens t h a t  have received isothermal pre-exposures in e i t h e r  static a i r  o r  

s ta t ic  argon. I n  t h i s  experiment, the thermal cyc le  l i v e s  of specimens t h a t  

have been pre-exposed f o r  se lec ted  times a t  1093°C (2000'F) i n  i n e r t  (argon) 

and oxidizing (air)  atmospheres are being compared. A l l  pre-exposed specimens 

should con ta in  "predamage" r e su l t i ng  from t h e  thermally-activated processes  

o the r  than  oxidat ion,  but only specimens pre-exposed in air  should con ta in  i n  

add i t ion  the  "predamage" due t o  oxidat ion (oxide scale growth on the  bond 

coa t ) .  Thus, t h e  d i f f e rence  i n  thermal cyc le  test l i v e s  of t h e  two groups 

should r e f l e c t  t he  e f f e c t  of bond coat ox ida t ion  and allow eva lua t ion  of t h e  

magnitude of t h e  o the r  thennally-activated phenomena ( s i n t e r i n g  of * the  bond 

coa t  and z i r con ia  l aye r ,  bond coat  and ceramic coat  creep, and bond 

coa t / subs t r a t e  i n t e rd i f fus ion ) .  

Thermal cyc l ing  of t he  pre-exposed specimens was accomplished i n  a 

programmable, microprocessor control led,  rapid-heating furnace with MoSi2 

heat ing elements t o  a maximum temperature of 1093OC (2000OF) (F igure  4). 

complete set of specimens (Table 111) w a s  cycled simultaneously. 

cyc le  w a s  approximately 70 minutes long wi th  approximately 10 minutes heat  up, 

45 minutes a t  temperature (1093OC), and 15  minutes forced a i r  cooling. 

Specimens were removed from the  test apparatus a f t e r  every f i f t h  cyc le  and 

v i s u a l l y  examined f o r  evidence of cracking and l o s s  of t h e  z i r con ia  layer .  

Each specimen w a s  removed from tes t  when 10  percent  of t h e  z i r con ia  l a y e r  had 

spal led.  

The 

The thermal 

Selected specimens were evaluated metal lographical ly .  
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RAPID TEMPERATURE FURNACE 

--- 10 minute heat LO 

--- 45 minute emsure a t  ZOO0 F 
--- 15 minute forced uir cooliricl 

Figure 4 Rapid temperature thermal cycle furnace 
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TABLE 111 .PRE-EXPOSURE (1093C) TIMES FOR BOND COAT OXIDATION EFFECT 
SPECIMENS (THERMAL CYCLE TESTING I N  AIR)  

Pre-Exposure 
Time (hours) 
a t  2000 F. 

0 

1 0  

50 

100 

500 

Specimens 
Pre-exposed 

i n  Argon 

3 

3 

3 

3 

12 

- 

Specimens 
Pre-exposed 

i n  Air 

3 

3 

3 

3 

3 

15 

- 

TABLE I V  PRE-EXPOSURE (1093C) TIMES FOR BOND COAT OXIDATION EFFECT 
SPECIMENS (THERMAL CYCLE TESTING I N  ARGON) 

Pre-Exposure 
Time (hours) 
a t  2000 F. 

Specimens Specimens 
Pre-exposed Pre-exposed 

i n  Argon i n  Air 

6* - 0 

100 3 6* 

5 00 3 - 6* - 
6 18 

*Three specimens a t  each pre-exposure w i l l  be 
cycled i n  a i r  t o  develop a base l ine  f o r  these  
specimens contained i n  an Inconel  718 can i s t e r .  
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The second experiment is similar t o  t h e  f i r s t  except t h a t  t h e  c y c l i c  

t e s t i n g  w i l l  be performed i n  s ta t ic  argon. 

specimens i n  argon f i l l e d  Inconel  718 c a n i s t e r s  (F igure  5) and thermal cyc l ing  

them i n  t h e  furnace descr ibed above. Argon pressure  i n  the  c a n i s t e r s  w i l l  be 

ad jus ted  t o  approximately 1 atmosphere a t  test  temperature 1093OC (2000'F). 

Basel ine specimens i n  unsealed c a n i s t e r s  w i l l  a l s o  be included i n  t h e  test t o  

assess the  e f f e c t  of reduced heat ing and cool ing rates. Five specimens w i l l  

be sealed i n  the argon c a n i s t e r  ( f i v e  pre-exposure condi t ions)  while t h r e e  

specimens w i l l  be cycled i n  t h e  unsealed c a n i s t e r  ( t h r e e  pre-exposure 

condi t ions) .  To provide t r i p l i ca t e  testing, th ree  sets of two c a n i s t e r s  each 

w i l l  be cycled. 

enclosed i n  can i s t e r s ,  t he  cool ing period w i l l  be increased from 15  minutes t o  

30 minutes. 

This w i l l  be achieved by sea l ing  

To compensate f o r  t h e  slower cool ing rate of specimens 

Specimens w i l l  be removed from the  c a n i s t e r s - a t  se lec ted  i n t e r v a l s  f o r  

inspect ion.  

because of t h e  added experimental  d i f f i c u l t i e s .  Planned pre-exposure t i m e s  

are l i s t e d  i n  Table I V ,  but may be modified based on experimental  r e s u l t s  from 

t h e  f i r s t  experiment (descr ibed above). Specimens f o r  t h i s  experiment have 

been coated w i t h  TBC and await pre-exposure. 

Fewer pre-exposures w i l l  be u t i l i z e d  than  in t h e  f i r s t  experiment 

P t  / R e  Experiments 

It w a s  o r ig ina l ly  planned t o  include specimens i n  t h e  thermal cyc le  tests 

t h a t  had t h i n  l aye r s  of P t  and R e  between t h e  bond coa t  and t h e  z i r con ia  

layer .  The in t en t  was t h a t  t he  R e  l a y e r  would reduce t h e  access of oxygen t o  

t h e  bond coa t  and thus  reduce t h e  formation of oxide scale on i t .  The 

intended purpose of t he  P t  l a y e r  between t h e  top  coa t  and t h e  R e  l aye r  w a s  t o  

reduce t h e  v o l a t i l e  i n t e r a c t i o n  between t h e  R e  and oxygen. 

22 



1 j 2  c m  

Figure 5 Inconel 718 can i s t e r  u t i l i z e d  for thermal cycle  t e s t i n g  
i n  argon 
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Preliminary tests,  however, showed these  Pt/Re l a y e r s  t o  be i n e f f e c t i v e  i n  

s i g n i f i c a n t l y  r e t a rd ing  oxide scale formation. Specimens wi th  t h e  P t / R e  

layers were exposed i n  s t a t i c  a i r  a t  1093" (2000OF) f o r  168 hours along wi th  

base l ine  specimens (no b a r r i e r  l aye r ) .  Micros t ruc tura l  examination revealed 

t h a t  a continuous oxide scale was present on specimens wi th  t h e  P t / R e  l a y e r s  

as w e l l  as on t h e  base l ine  specimens. The primary d i f f e r e n c e  was  t h a t  t h e  

oxide s c a l e  formed a t  t h e  p l a t ing / top  coa t  i n t e r f a c e  i n  t h e  Pt/Re specimens, 

whereas i t  formed a t  the  usual l oca t ion  (bond c o a t  / t op  coa t  i n t e r f a c e )  i n  t h e  

base l ine  specimens. The presence of t he  Pt/Re l a y e r  r e s u l t e d  i n  only small 

decreases  i n  oxide s c a l e  th ickness  ( 3 p  m versus  4 p  m). T h i s  may be 

a t t r i b u t a b l - e  t o  t h e  t i m e  necessary f o r  AI. from t h e  bond coa t  t o  move through 

the  p l a t i n g  t o  the pl .ating/top coa t  i n t e r f a c e .  

Based on these r e s u l t s ,  t h e  use of P t / R e  l a y e r s  t o  r e t a r d  oxide s c a l e  

growth w a s  discontinued, and in s t ead  an experiment w a s  designed i n  which 

thermal b a r r i e r  coated specimens w i l l .  be thermal. cycl.ed i n  an i n e r t  (argon) 

environment (as described ear l ier) .  

Bond Coat Creep Ef fec t  Experiment 

The experiment t o  eva lua te  t h e  e f f e c t  of bond coa t  creep s t r e n g t h  on 

thermal cyc le  l i f e  u t i l i z e d  fou r  d i f f e r e n t  bond coa t  a l l o y s  (Table V )  t h a t  

have s i g n i f i c a n t l y  d i f f e r e n t  c reep  s t rengths .  The modified N i C r A l Y  bond c o a t s  

inc lude  addi t ions  of Co, Mo, Ta,  W, Re,  Hf, C ,  B, S i ,  Z r ,  and T i .  The bond 

coa t  l a y e r s  on these specimens a l s o  received a Codep (aluminide) coa t ing  

(Figure 6 )  before the  ceramic l a y e r  was deposited t o  reduce t h e  e f f e c t  of any 

d i f f e r e n c e s  i n  oxidation r e s i s t a n c e  on thermal cyc le  l i f e .  A l l  specimens were 

coated wi th  t h e  same Z r O  -8%Y 0 ceramic l a y e r .  Nine specimens of each 2 2 3  
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Table V BOND COAT CREEP EFFECT TBC SYSTEMS 

Systems Substrate / Bond Coating / Over Coating/ Top Coating Bond Coat Creep 
(LarsonIMiller 
Parameter @ 3 
KSI - rupture 
teqt) 

1 Rene'80 / Bond Coating 1' / Aluminide / Zr02-Y203 

2 

3 

4 

Rene'80 / Bond Coating 2* / Aluminide / Zr02-Y203 45.7 

47.0 

48.4 

Rene'80 / Bond Coating 3* / Aluminide / Zr02-Y203 

Rene'80 / Bond Coating 4* / Aluminide / ZrO2-Y2O3 

' Ni-22Cr-lOAl-0.3Y 

* Modified NiCrAlY bond coats 

TABLE VI PRE-EXPOSURE (1093C) TIKES FOR BOND C O U  CPREEP EFFECT 
SPECIMEN (THERMAL CYCLE TESTING IN AIR) 

Alloys Specimens specimens Specimens 
With No Pre-exposed . Pre-exposed 
Pre-exposure in Argon in Air 

(2000F, 100 hrs) . (2000F, 100 hrs) 

1 3 3 

2 3 3 

3- 3 

3 - 4 

12 

3 

3 

12 

- 

3 

3 

3 

3 

12 

- 

25 



.Top Coat 

0.1: 

Bond Coat 

aluminide 

-Bond Coat 

a) As-sprayed microstructure 

Top Coat 

Aluminide 

b) Bond coat/top coat interface 

Figure 6 Microstructure of as-sprayed TBC with aluminide 
coated bond coat(Rene '80/NiCrAlY/Aluminide/ 
ZrO -Y 0 2 2 3) 
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TBC have been prepared f o r  thermal. cycle t e s t ing .  Three specinens were 

exposed i n  argon f o r  100 hours a t  1093°C (2000°F), t h r e e  were exposed i n  a i r  

f o r  t he  same t i m e  and temperature; three specimens received no pre-exposure 

(Table V I ) .  The d i f f e rence  i n  thermal. cyc le  l l v e s  should be a func t ion  of 

bond coa t  creep s t r e n g t h  and p r e t e s t  conditions.  

experiment is  t o  eva lua te  t h e  e f f e c t  of bond coa t  creep s t r e n g t h  on TBC 

f a i l u r e  and t o  obta in  a measure of i t s  e f f e c t  r e l a t i v e  t o  t h a t  of oxidat ion.  

The i n t e n t  of t h i s  
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RESULTS 

Pre-Exposures 

Surface Appearance 

The su r face  appearances of the  specimens pre-exposed i n  t h e  two d i f f e r e n t  

environments (argon and air)  were i n d i c a t i v e  of those  environments. The 

argon atmosphere exposures a t  1093OC (2000°F) produced c l ean  unoxidized 

bond coa t  sur faces ,  while  t he  ceramic top  coa t  had a gray appearance which can 

be a t t r i b u t e d  t o  oxygen def ic iency  (Figure 7a).  This  gray appearance i s  

common f o r  TBCs t h a t  r ece ive  vacuum or  i n e r t  atmosphere h e a t  t reatments .  

a i r  atmosphere exposure 

The 

a t  1093OC (2000°F) produced oxidized bond coa t  

su r f aces ,  while t h e  ceramic top coa t  had a straw colored ,  appearance t y p i c a l  

of e leva ted  temperature a i r  exposure (Figure 7b). 

Microstructure  

I n  a l l  cases ,  a continuous A1203 scale formed a t  the  bond coa t / t op  

coa t  i n t e r f a c e  i n  specimens that  were pre-exposed i n  a i r  a t  1093°C 

(2000°F). 

d i f f e r e n t  pre-exposure times (Figure 8) f o r  t h e  base l ine  TBC system. 

oxide scale thickness  var ied  from 3 p m  - 5 p  m f o r  t h e  four  d i f f e r e n t  bond coa t  

systems t h a t  were pre-exposed i n  air f o r  100 hours  (bond coa t  creep e f f e c t  

specimens)(Table VII). 

deple t ion  (high A 1  phase, N U 1  type s t r u c t u r e )  i n  t h e  bond coa t  a t  t h e  bond 

The oxide scale thickness  va r i ed  from 2 p?n t o  6 pm f o r  t h e  

The 

The formation of t h e  A1203 scale r e s u l t e d  i n  B 

coat / top  coa t  i n t e r f a c e  (Figures  9&10)*. Depletion of t h e  h igh  A 1  phase 

a l s o  occuxred i n  the  bond coa t  a t  t he  bond c o a t l s u b s t r a t e  i n t e r f a c e  due t o  

in t e rd i f fus ion .  This  i n t e r d i f f u s i o n  a l s o  r e s u l t e d  i n  formation of h igh  

Cx par t ic les  (presumably M C carb ides)  i n  both t h e  bond coa t  and 23  6 

I * Etchant: 10% phosphoric ac id ,  90% water (3-5 v o l t s  appl ied)  



a) 50 hour argon pre-exposure 

b)  50 hour a i r  pre-exposure 

Figure 7 TBC specimens a f t e r  rece iv ing  a i r  o r  argon pre- 
exposures a t  1093C (2000F) 

2 9  
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TABLE VII OXIDE SCALE THICKNESS AT BOND COAT/TOP COAT INTERFACE AFTER 

EFFECT SPECIMENS 
100 HOUR AIR PRE-EXPOSURE ( 1 0 9 3 C )  FOR TIIE BOND COAT CREEP 

BOND COATING 

1 

2 

3 

4 

OXIDE SCALE THICKNESS (urn) 

3 . 0  

5 . 3  

2.8 

4 . 3  

3 1  
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s u b s t r a t e  near  t h i s  i n t e r f ace .  These carb ides  gene ra l ly  are not  harmful s i n c e  

f a i l u r e  does not normally occur iri these  TBC systems a t  t h e  bond coa t /  

s u b s t r a t e  in te r face .  

h ighly  adherent t o  both t h e  bond coa t  and t h e  top  coat .  

It w a s  observed t h a t  i n  a l l  cases the  A1203 scale i s  

The use of c a n i s t e r s  containing argon w a s  very e f f e c t i v e  I n  r e t a r d i n g  

oxidat ion during pre-exposure a t  1093OC (2000°F)*. 

e s s e n t i a l l y  no A1203 w a s  de tec ted  a t  t he  bond c o a t l t o p  coa t  i n t e r f a c e  by 

o p t i c a l  microscopy a f t e r  pre-exposure (Figures  l l , l 2 ) .  

472 hour pre-exposure where a l eak  developed i n  t h e  argon c a n i s t e r  system a t  

approximately tha t  point  i n  t i m e .  

terminated a t  t h i s  po in t  i n s t ead  of t h e  500 hour planned exposure. 

t he  specimens r e fe r r ed  t o  as being pre-exposed f o r  500 hours were a c t u a l l y  

pre-exposed f o r  472 hours. 

traces of A 1  0 2 3  

specimens (Figure 1 2 ) .  

dep le t ion  a t  the top  coatlbond coa t  i n t e r f a c e ,  whereas a l l  o ther  argon 

pre-exposure specimens had neg l ig ib l e  dep le t ion  a t  t h i s  i n t e r f ace .  The 

I n  a l l  cases except one, 

The except ion w a s  t h e  

Both the  air  and argon pre-exposures were 

Therefore ,  

The argon l eak  r e s u l t e d  i n  the  development of 

scale at t h e  bond c o a t l t o p  coa t  i n t e r f a c e  f o r  t hese  

The growth of t hese  traces d i d  r e s u l t  i n  some 

formation of M23C6 ca rb ides  and B dep le t ion  i n  t h e  bond coa t  can aga in  be 

seen a t  the  bond c o a t l s u b s t r a t e  i n t e r f ace .  

(Figures  11,121 of t h e  argon pre-exposed specimens d i d  not  appear t o  have t h e  

high degree of adherence t h a t  t h e  a i r  pre-exposure specimens which had formed 

a continuous A1203 scale (Figures  9,lO VS. Figures  11,12). 

The bond c o a t l t o p  coa t  i n t e r f a c e  

* The change i n  weight w a s  measured a f te r  both t h e  100 hour argon and 100 
hour a i r  pre-exposures f o r  t h e  bond coa t  creep e f f e c t  specimens. 
pre-exposures exhib i ted  0 -62-0.90 mg/cm 
pre-exposures exhib i ted  0 -07-0 -35 mg/cm2 weight l o s ses .  

The a i r  
2 weight ga ins ,  while  t h e  argon 

~~. 

3 4  



H U u 
m m 
0 0 
U u 

0 

aJ a 
TI 
P 
k a 
U 

ra 
W 
X 
V 
b w 

U 
(d 
0 u 
a 
0 
k 

U 
m 
0 u 
a 
E a 

n w 
X 
V 
b E - * 

m 

n cu 
0 
0 
0 
N 
W 

U a 
aJ 
b 
5 
in 
0 a 

I 
aJ 
b a 

s 

C 
0 
M 
1.1 a 
k 
3 
0 
t: 

x 

aJ 
k 
5 
U 
L) 
3 
k 
U 
(I) 
0 
I-I 
U 
.r( c 

rl 
rl 

aJ 
k 
3 
M 
TI 
kl 

3 5  



H 

d 
H 

d 

a, 
Ll 
7 rn 
0 a 
X 
a, 
I 
a, 
$4 a 
$4 
7 
0 c 
0 
Ul 

n n 

a, 
$4 
5 m 
0 a 
X 
aJ 
I 
a, 
bl a 
$4 
7 
0 c 
0 
Fi 

n 
(d 

a, 
Ll 
3 rn 
0 

a, 
I 
a, 
bl a 

i? 

L 
5 
0 c 

h 

-0 

U 
W 

$4 
1 rn 
0 a 

I aJ 
$4 a 

E 

$4 
1 
0 c 
0 

3 

h 
V 

0 
0 
0 
hl 

m 
m 
0 
Fi 

U 
(d 

C 
0 
M 
Ll 
(d 

e 
T I  

a 
a, 
0 
0 a 
X 
a, 
I 
a, 
Ll a 
rn 2 '  
4 
V 
aJ a rn 

0 

rn 
a, 
$4 
7 
U 
u 
1 
L l -  
u m 
0 
Ll u 
2 

hl 
4 

aJ 
$4 
1 
c5 
-4 
Frr 

H 

0 

H 

0 

3 6  



Concentration/Distance P r o f i l e s  
I 

Concent ra t ion /d is tance  p r o f i l e s  (Electron Microprobe) were determined f o r  t h e  

b a s e l i n e  specimens a t  each 0.f t h e  pre-exposure cond i t ions .  

assess t h e  compositional. changes that t h e  bond c o a t  experienced dur ing  t h e  

pre-exposure v i a  i n t e r d i f f u s i o n  and oxidation. 

i n  t h e  top  coa t ,  bond coa t ,  and subs t r a t e .  However, t h e  measurements 

i n d i c a t e d  t h a t  very l i t t l e  i n t e r d i f f u s i o n  occurred between t h e  top  coa t  and 

bond coa t .  Based on these  f ind ings ,  t he  concen t r a t ion /d i s t ance  p r o f i l e s  shown 

inc lude  only bond coa t  and s u b s t r a t e  measurements (F igures  13,14,15,&16).  The 

The p r o f i l e s  

Probe measurements were t aken  

p r o f i l e s  should be considered semi-quantitative s i n c e  a two o r  t h r e e  phase 

s t r u c t u r e  is  s t i l l  p re sen t  i n  t h e  bond c o a t  and i n  t h e  s u b s t r a t e  a f t e r  

pre-exposure. 

a n a l y s i s  from t h i s  2 o r  3 phase s t ruc tu re .  

The scatter observed i n  t h e  p r o f i l e s  can be a t t r i b u t e d  t o  

The p r o f i l e s  f o r  AI (F igure  14a,b,c,&d) show t h e  inc reas ing  loss of AI 

from t h e  bond coa t  t o  form AI 0 sca l e  a t  t h e  bond c o a t l t o p  c o a t  i n t e r f a c e  

and i n t o  t h e  subst 'rate v i a  i n t e r d i f f u s i o n  caused by inc reas ing  pre-exposure 

2 3  

time. I n  a31 cases ,  a lower AI l eve l  i s  p resen t  a t  t h e  bond c o a t l t o p  c o a t  

i n t e r f a c e  f o r  t h e  specimens pre-exposed i n  a i r .  However, t h e  AI p r o f i l e s  a l s o  

i n d i c a t e  t h a t  bond c o a t l s u b s t r a t e  i n t e r d i f f u s i o n  i s  more s i g n i f i c a n t  i n  

reducing t h e  q u a n t i t y  of AI present  i n  t h e  bond coa t .  

S i g n i f i c a n t  i n t e r d i f f u s i o n  has occurred f o r  t h e  o t h e r  elements such as C r ,  

W ,  T i ,  Co, and Mo (F igures  1.4,1.5,&1.6). S i g n i f i c a n t  q u a n t i t i e s  of C r  have 

moved from t h e  bond coa t  i n t o  t h e  s u b s t r a t e ,  while s i g n i f i c a n t  q u a n t i t i e s  of 

T i ,  Co, W, and Mo have moved i n t o  t h e  bond c o a t  from t h e  s u b s t r a t e .  These 

t r a n s f e r r e d  q u a n t i t i e s  a l s o  increased substantial.1.y wi th  pre-exposure t i m e .  

3 7  



W 
V 
a 
Y- 
L 
W 
c, 
E 
c 

W 
4 1  I 

U 
r 
0 n 

0 
0 

In 0 In 
N N 

m m m 0 

lN33H3d lH3 I3M 

3 8  



0 
L n  

u L ~ 

I/ 1 

-0 
0 
r+ 

0 
I n  -m 

0 
0 

-m 

0 
-0 - 

m l - l  
3 

I O  c 
U 
(do o m  
L) 

-0 
C 
O n  a n  

m 
d 

al 
Ll 
3 
M 
.I4 
cr, 

1N33d3d l H 3  13M 

3 9  



I 1  

< <  
e- 

Q D  

W 
V 

L 
W 
c, 
E 

r" 
I 

c 

0 
V 

0 
E 
0 n 

4 

rn 

Q 

c 

n 

0 -m 

l-r 
U 

U 
m 
.rl a 
\ 

.rl 
U a 
l - r -  

0 
ul-r m a  
7l-r 
m 3  
0 

I C  

n 

u o  a 0  
0 4  
U 

-u 
C 
O h  
m u  

4 0  



0 lo 

0 
L! cr: 

0 
0 rn 

lN33t13d lH313M 

41 



m I I I I  

a o t ~  

Cr ai ai 

n 

0' 
,Ln CT, -' 

0 

0 
-Ln 

N a 

lN33W lH3 I3M 

4 2  



-. 

G 
0 u 

I 

I I 

- 

I 

TI 
E 
0 n 

-0 
0 
rt 

0 
Ln -m 

0 
-8 

n 

n 

0 
-0 
c1 

0 
4.n 

.rl 
b 
a 
G 
(d 

0 
V 
M 
0 
w 
m 
aJ 
rf 
.rl 
w 
0 
M a 
aJ 
U 

U 
v) 
.rl 

\ 
E: 
0 
.rl 
U 
a 
M 
U 
c m  
a J a J  
u M  
G l  
o m  
0 0  a a J x  
U Q I  
( d I  
M a J  
U M  
m a  
S M  
m l  

0 
I S  

u o  (do 
0 4  u 
a 
G 
O h  

8 
- " 

e 

a n  

U 
4 

aJ 
M 
1 
M 
-4 
F 

lN3383d lH3 13M 



lN3383d lH3 I3M 

0 

0 
-3 

0 
-In 

4 4  



Q 0 0  
rli: 

Q O  

W 
V 

L 
W 
c, 
E 

r" 

c 

-0 
0 

0 
In 

'rn 

0 h 
0 -E u+ 
U. 
a, 
d 
.rl 
w 
0 

- \  

0 
.I4 

ow C 
0 
" 

z a 
0' 
-In# 

0 
-In 

-0 

U cro 
a l a ,  
O h  c 1  
o r n  u o  a 
a x  ua, 
( d I  
h a ,  
U h  m a  
1 h  
r n l  
0 

I S  

u o  
(do 
0 4  
V 

a 
C 
O n  
c 9 P  

n 

In 
d 

a, 
h 
1 
M 
.rl 
ra 

lN33tJ3d lH3 I3M 
4 5  



0 
[1 
x 
u 
I 

W 
CY 
Q 

0 

I 

3 

D 

U 
E 
0 
n 

c3 z 
CI c 
8" 

I 1 I I I 
Ln d m N c1 0 

3 
Ll 
0 
w 
v) 
0) 
rl 
-rl 
w 
0 
&l a 
aJ u 
C 
(d 
U 
v) 
.d 
U 
\ 

rl 
U tu 
Ll 
U 

u a l  
G L l  
0 3  
urJY 
0 a n  u x  

( d o  
N I  
UaJ 
V I L l  
3 
m & l  
3 

I O  c 
U 
(do o r l  u 
a 
c 
O n  

& m  

n a  

m a  

\D 
rl 

aJ 
Ll 
3 
M 
rl 
k 4  

lN33EId lH3 I3M 
4 6  



C L  
x u 

I 

0 
0 
e 

c3 z 
i 

4 

I 

I 

\ 
m 

\ 

-0 
0 e 

U 

aL 

ZZ ow 
0 
'N 

0 .m 

3 
$4 
0 

rc1 

VJ 
aJ 
rl 
'd w 
0 
$4 a 
al 
U 

2 
L) co 
rl 
U 
\ 
C 
C 
.rl 
U 
a 
h 
u 
C V J  a J a J  u $ 4  
c 3  
o m  u o  

P a x  
UP)  
( D I  
$ 4 0 )  
U L  
VJa 

3Ll 
(113 
0 

I C  

e 

u c  a 0  
0 4  
U 

U 
C 
O n  
E9P 

aJ 
$4 
3 
M 

lN33Hd lH313M 

4 7  



Concentration distancelprofiles on the pre-exposure specimens will also be 

determined for the TBC systems utilizing four different bond coats after the 

100 hour pre-exposure time. These profiles were not available for this report. 

These profiles combined with thermal cycle test data may indicate that 

composition matching of the substrate to the bond coat strongly affects TBC 

integrity. Possibly, compositional data may be required to model TBC 

systems. This situation would require a more detailed probe analysis. 

Thermal Cycle Tests 

Bond Coat Oxidation Effect Experiments 

Thermal cycle testing in air to evaluate bond coat oxidation as a failure 

mechanism has been completed. In all cases, initial spalling occurred at the 

top coat edges (Figure 17). However, in some cases catastrophic failure 

(complete spalling) of the TBC occurred (Figure 17). Failure was defined as 

when 10% (surface area) of the ceramic top coat had spalled. 

Unexpectedly, the specimen pre-exposed in argon failed before the 

specimens pre-exposed in air (Figures 18, 19). Failures in all cases occurred 

in the ceramic top coat (Figure 20) approximately 0.025 - 0.050 mm (.001 - 
.OO2") from the bond coatltop coat interface (normal TBC failure location). 

Continuous oxide scales of 3-4 pm (excluding the 4 7 2  hour pre-exposure (Table 

VI11 and Figures 21, 2 2 )  were observed at the bond coat/top coat interface for 

the as-sprayed and air pre-exposed specimens after thermal cycle testing at 

failure. This is contrasted with the specimens pre-exposed in argon where 

oxide scales generally less than 1 

by optical microscopy (Figures 2 3 ,  24) after thermal cycle testing. 

pm developed and appeared non-continuous 

48 
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TABLE VI11 OXIDE SCALE THICKNESS OF FAILED BOND COAT OXIDATION EFFECT 

SPECIMENS (average va lue  of t h r e e  tes t  specimens) AFTER 
THERMAL CYCLING 

Pre-exposure Condition* 

As-Sprayed 

10 hour a i r  

50 hour a i r  

100 hour a i r  

500 hour a i r  

Oxide S c a l e  Thickness(pms) 

3 . 6  

4 . 0  

3 . 6  

4 . 0  

6 . 7  

*Specimens pre-exposed i n  argon-had scales less than  
1 pm t h i ck .  

5 2  



-Top Coat 

- Crack 

Eond Coat 

- 0 .  I. 

a) 100 hour argon pre-exposure 
( 50 cycles 1 

b) 100 hour air pre-ekposure 
( 65 cycles) 

Top Coat 

Crack 

Bond Coat 

0 .  I. 

Figure 20 Microstructure of TBC at failure location 
after thermal cycle testing 
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\ 
Inves t iga t ions  a re  underway t o  t r y  t o  understand t h i s  unexpected r e s u l t .  

These inves t iga t ions  include X-ray d i f f r a c t i o n ,  metallography, micro-hardness, 

e l ec t ron  microprobe, and scanning e l e c t r o n  microscope ana lys i s .  

Another i n t e r e s t i n g  r e s u l t  w a s  t h e  improved thermal cyc le  l i f e  f o r  t he  

specimens pre-exposed i n  a i r  f o r  10 hours. A poss ib l e  explanat ion is  t h a t  t h e  

improvement can be a t t r i b u t e d  t o  t h e  improved bond coa t / top  coa t  adherence 

assoc ia ted  with t h e  A 1  0 scale t h a t  i s  present  before  thermal cyc l ing .  

Generally,  i n  the as-sprayed condi t ion,  t h e  bonding between the  ceramic top 

2 3  

coat  and metal bond coat  i s  cpnsidered e s s e n t i a l l y  mechanical. The mechanicxl 

na ture  of t h i s  bond i s  demonstrated by t h e  bond coa t  sur face  roughness 

requirement. However, t he  growth of t h e  continuous A l  0 s c a l e  during t h e  

a i r  pre-exposure should increase  t h e  chemical bond between t h e  bond coa t  and 

2 3  

t h e  top  coat .  

produced by t h e  s t r e s s e s  developed due t o  t h e  a d d i t i o n  of t h e  A1203 scale 

( cons t r a in t  s t r e s s e s ) .  Also, i n i t i a l  A 1  0 growth may not develop these  

cons t r a in t  stresses. Bond coat  and top coa t  s i n t e r i n g  during t h e  pre-exposure 

The improved adherence may over r ide  t h e  negat ive e f f e c t s  

2 3  

may al low t h e  growth of s m a l l  q u a n t i t i e s  of scale before stresses are 

developed. This r e s u l t  w i l l  be f u r t h e r  evaluated. 

Generally,  good r e p e a t a b i l i t y  <thermal  cyc le  l i v e s )  w a s  observed f o r  each 

pre-exposure condition. The exceptions were t h e  10 and 50 hour a i r  

pre-exposures where s i g n i f i c a n t  scatter w a s  observed from one specimen t o  

another  (Figure 19).  

t o  microstructure  and processing h i s to ry .  

Inves t iga t ions  are underway t o  c o r r e l a t e  t h e  d i f f e rences  

Thermal cycle t e s t i n g  i n  argon t o  f u r t h e r  eva lua te  bond coa t  ox ida t ion  as 

a f a i l u r e  mechanism has not ye t  s t a r t ed .  The specimens are p resen t ly  i n  the  

58 



as-sprayed condition, but the pre-exposures in air and argon have been delayed 

until the cause of the unexpected result in the above experiment can be 

further assessed. 

Bond Coat Creep Effect Experiments 

The specimens for evaluating the effect of bond coat creep on TBC failure 

have received both the air and argon pre-exposures. 

used to evaluate the effect of bond coat creep, and also will evaluate how 

these pre-exposures affect TBCs with high strength bond coats. 

tests in air of these specimens have also been initiated. 

These specimens will be 

Thermal cycle 

Key Property Determination 

The procedures to determine tensile strength, Poisson's ratio, dynamic 

modulus, and coefficient of thermal expansion have been finalized. These 

properties will be determined for both the bond coat and the top coat at room 

temperature (RT) 538°C (1000°F) 982°C (1800°F) ; 1038°C (1900"F), and 1093°C 

(2000°F) . 
Standard testing procedures and test specimens (Figure 25) will be 

These specimens will be utilized for the NiCrAlY bond coat specimens. 

machined from 5.1 cm (wide) by 15.2 cm (length) heat treated LPPS NiCrAlY 

billets (various heights). The as-sprayed billets will receive a four hour 

vacuum heat treatment at 1093°C (2000°F). 

increase the machinability of the billets. 

The heat treatment is used to 

The 1093°C heat treatment 

temperature was chosen since this is the soak temperature utilized in thermal 

cycle testing. 

Special test configurations (Figure 26) will be required for the ceramic 

top coat specimens. In all tests, free-standing air plasma sprayed (APS) 
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(a> DYNAMIC MODULUS AND POISSON'S RATIO SPECIMEN. 
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( c )  BEND STRENGTH SPECIMEN 
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Figure 26 Top coat specimen configurations (all dimensions in centimeters) 
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specimens w i l l  be u t i l i z e d .  Free-standing specimens w i l l  be produced by 

depos i t ing  t h e  ceramic coat ing material on copper o r  s t a i n l e s s  s teel  

s u b s t r a t e s  and inducing a thermal shock t o  cause s p a l l a t i o n  of t h e  i n t a c t  

ceramic sheet .  

specimen configurat ions (Figure 2 6 ) .  

heat  treatment i n  a i r  a t  1093OC (2000'F) p r i o r  t o  t e s t i n g .  

Some f i n a l  machining may be required t o  achieve t h e  des i red  

These specimens w i l l  r ece ive  a f o u r  hour 

Spec ia l  t e s t ing  procedures w i l l  a l s o  be required f o r  t he  top  coa t  

specimens. Bend s t r eng th  w i l l  be determined u t i l i z i n g  the  four  poin t  bend 

test. Poisson's r a t i o  w i l l  be determined u t i l i z i n g  two d i f f e r e n t  methods. I n  

t h e  f i r s t  method, s t r a i n  gauges w i l l  be a t tached  t o  bend test specimens. This 

method ( l imi t ed  t o  room temperature) has  previously been u t i l i z e d  t o  determine 

Poisson's r a t i o  a t  RT f o r  f r e e  standing APS M g O - Z r 0 2  specimens (5). 

Poisson's r a t i o  w i l l  a l s o  be determined a t  RT and e leva ted  temperatures by 

resonance techniques. . In  t h i s  technique, Poisson's r a t i o  w i l l  be ca l cu la t ed  

fram the  shear  modulus and dynamic modulus measurement obtained by t h i s  

technique. F ina l ly ,  c o e f f i c i e n t  of thermal expansion w i l l  be measured 

u t i l i z i n g  t h e  Chevenard di la tometer .  
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CONCLUSIONS 

. 

The f i r s t  t a s k  of t h e  study involves t h e  determinat ion of TBC f a i l u r e  

mechanisms. 

determinat ion and thermomechanical t e s t ing  r e s u l t s  t o  develop TBC l i f e  

p red ic t ion  models. 

The information will be u t i l i z e d  i n  conjunct ion with key property 

Thermal cyc le  t e s t i n g  i n  a i r  t o  evaluate  oxidat ion as a f a i l u r e  mechanism 

I n e r t  pre-exposures i n  argon have been very e f f e c t i v e  i n  has been completed. 

reducing bond coa t  oxidat ion.  Unexpectedly, i n i t i a l  tes t  da t a  i n d i c a t e  t h a t  

pre-exposures in argon a r e  more detr imental  t o  thermal cyc le  l i f e  ( s h o r t e r  

thermal cyc le  l i f e )  than  pre-exposures i n  air. 

may be a t t r i b u t e d  t o  less adherence of t h e  top  coa t  t o  t h e  bond coa t  i n  

specimens t h a t  were pre-exposed i n  argon. 

The lower thermal cyc le  l i f e  

Inves t iga t ions  are underway t o  tes t  

t h i s  hypothesis and eva lua te  o ther  p o s s i b i l i t i e s .  Thermal cyc le  tests i n  

argon have been delayed u n t i l  t h e  cause of t h i s  r e s u l t  is more completely 

understood. Addit ional  experiments a re  a l s o  being considered t o  supplement 

t h e  pre-exposure experiments being u t i l i z e d  t o  eva lua te  bond coa t  oxidat ion as 

a f a i l u r e  mechanism. 

The specimens t o  be used f o r  evaluating t h e  e f f e c t  of bond coat  creep 

s t r eng th  on TBC thermal cyc le  l i f e  have received a 100 hour pre-exposures i n  

a i r  o r  argon, o r  no pre-exposure. Thermal cyc le  t e s t i n g  of t hese  specimens i n  

a i r  has been i n i t i a t e d .  The test will evalua te  t h e  e f f e c t  of bond coa t  creep 

and a l s o  tes t  t h e  r e p e a t a b i l i t y  of the  de t r imen ta l  e f f e c t s  of argon 

pre-exposures on d i f f e r e n t  TBC systems ( d i f f e r e n t  bond coa t s ) .  

F ina l ly ,  key property determination methods f o r  t he  bond coat  and top coa t  

have been se lec ted .  

t h i s  p ro jec t .  

The proper t ies  will be determined i n  t h e  second year  of 

6 3  
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